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ABSTRACT

The effect of midplane stresses (uniform or non-uniform) due to
prescribed temperature distributions over a simply supported isotropic
rectangular plate with edge stiffeners on the flutter behavior of the
plate when subjected to supersonic airflow over one surface is considered.
The aerodynamic loading is assumed to be given by the two dimensional
static aerodynamics or the Ackeret theory. In addition to the thermal
and aerodynamic loading, the analysis includes external in-plane loadings
distributed along each pair of opposite stiffeners.

A11 four stiffeners are assumed to be uniform and to possess
finite axial stiffness and either zero or infinite bending stiffness in
the plane of the plate. The plate edges are assumed to be integrally
attached to the stiffeners along the centroidal axes of the stiffeners, and,
in accordance with the simple support assumption, are assumed to provide
infinite restraint against lateral deflection and no restraint against
rotation.

The analysis is carried out in two parts. In the first part,
the midplane stresses for the particular prescribed temperatures are
evaluated, and in the second part the flutter behavior (or, more generally,
the dynamic response) is determined. In evaluating the midplane stresses,
Fourier series are used. In determining the flutter boundary Galerkin's
technique is adopted.

The cases investigated are:

1) Rectangular plate with edge stiffeners of zero bending stiffness and
finite axial stiffness, and a pillow-shaped temperature distribution
(i.e., varying as half a sine wave in both directions).

2) Rectangular plate with edge stiffeners of infinite bending stiffness
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and finite axial stiffness, and a pillow-shaped temperature distribution.
3) Rectangular plate with edge stiffeners of infinite bending stiffness
and finite axial stiffness, with a temperature distribution discontinuous
as follows: the plate temperature is constant at one value while the
stiffener temperatures are constant at a different value.

Although the general analysis is as described above, numerical
results were computed only for a square plate with all four stiffeners
identical, and no external loading except for the aerodynamic loading.
The numerical results show that the flutter boundary is significantly
affected by the axial stiffness of the stiffeners, the flexural stiffness

of the stiffeners and the type of temperature distribution.
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INTRODUCTION

One of the problems to be considered in the design of modern
high-speed aerospace vehicles is the flutter of external 'skin panels in
the supersonic regions of flight. Flutter is an aeroelastic, self-
excited vibration in which the external source of energy is the airstream.
A large number of parameters influence this phenomenon. The purpose of
the present paper is to investigate the effect of one of these parameters,
namely, thermally induced midplane stresses.

A prior investigation of this kind was made by Schaeffer and Heard
(ref.1)who studied the supersonic flutter behavior of a flat rectangular
plate with uniform edge 1oading in both directions and a non-uniform
temperature distribution which varied parabolically in both directions
over the plate but was constant through the thickness. The edges of the
plate were assumed to be simpiy supported, but otherwise free of any
external constraint.

The present investigation is similar to Schaeffer and Heard's
but introduces different conditions with regard to external constraint.
The edges are still considered to be simply supported (i.e., to have zero
lateral deflection and zero normal bending moment), but are assumed to be
integrally attached to stiffeners of finite axial stiffness along their
centroidal axes. With regard to the flexural stiffness of these stiffeners
for bending in the plane of the plate, two limiting cases are considered:
zero flexural stiffness and infinite flexural stiffness. The latter case
correspands to the situation in which the edges are held straight or nearly
straight because of the continuity between the plate and neighboring
plates across the stiffeners; the former corresponds to the case in which

there is little or no surrounding material beyond the edge stiffeners.



The simple support assumption implies that the edge stiffeners are
considered to have negligible torsional stiffness.

The main difference between the present investigations and Schaeffer
and Heard's lies in the edge conditions as described above. However,
there are two minor differences between the present paper and reference 1
with regard to external loading and temperature distribution: Whereas
reference 1 considers a uniform biaxial external loading, the present
work considers a biaxial loading which need only be symmetric about
each center line of the plate. And while reference 1 employs a parabolic
temperature distribution, the present analysis assumes a sinusoidal one.
In addition, for the case of flexurally rigid stiffeners only, the present
paper also considers a discontinuous temperature distribution with the
stiffener temperature constant at one value and the plate temperature
constant at a different value. As in reference 1, the temperature is
assumed in all cases not to vary through the thickness.

The analysis consists of two parts: the evaluation of the midplane
stresses due to the temperature distribution as well as external loading,
and the flutter analysis proper, using these midplane stresses. For the
evaluation of the midplane stresses the techniques of references 2 and 3
are mainly employed, which are based on double Fourier series. The
flutter analysis is executed by means of the Galerkin method in the manner
of reference 1. As in reference 1, the aerodynamic loading is assumed
to be given by the two dimensional static aerodynamics or Ackeret theory.
For the special case of the plate with flexurally rigid edge stiffeners and
discontinuous temperature distribution (stiffener temperature constant at
one value, plate temperature constant at a different value), it was found

that the midplane stress problem could be salved by elementary considerations,



leading to a homogenous state of stress in the plate, and then the solution
to the flutter problem could be extracted from the results of reference 1
by merely redefining certain parameters.

Based on the general analysis, numerical results are computed for
the case of a square plate with all stiffeners identical and no external
loading. For the sinusoidal (hereinafter called "pillow-shaped") temperature
distribution calculations were made for both the zero and infinite flexural
stiffness cases. For the discontinuous temperature distribution numerical
results are given only for infinite flexural stiffness case.

The numerical results for these three cases are compared with each
other. Those for the pillow-shaped temperature distribution are compared
with those of Schaeffer and Heard in order to indicate the effect of the
edge stiffeners. As is to be expected, for a given amplitude of temperature
the presence of the stiffeners raises the general magnitude of the in-plane
thermal compressive stresses and thereby lowers the flutter boundary. For
the same reason, the fluexurally rigid stiffeners Tead to a greater
lowering of the flutter boundary than do the perfectly flexible stiffeners;
and the discontinuous temperature distribution leads to a greater lowering
of the flutter boundary than does the pillow-shaped temperature, in the

case of flexurally rigid stiffeners.



DETAILED DESCRIPTION OF STRUCTURE AND LOADING

The configuration of plate and stiffeners is shown schematically in
Figure 1. The plate is rectangular and flat, of length a, width b, and
thickness h. Any point on the plate is defined by its x and y co-
ordinates in the Cartesian reference frame whose axes coincide with two
adjacent edges of the plate, as shown in Figure 1. The structure is
symmetric about each of its two center lines. Thus the cross-sectional
areas of the stiffeners located along x = 0 and x = a are both denoted
by the same symbol A;, and the cross-sectional areas of the stiffeners
at y=0 and y =b are both denoted by A;. 1t is assumed that the
stiffener axes coincide with the plate edges.

The plate is homogeneous, elastic, and isotropic, with Young's
modulus E, and Poisson's ratio v, and coefficient of thermal expansion a.
The stiffeners are assumed to have the same Young's modulus and the same
thermal expansion coefficients as the plate.

The temperature distributions T(x,y) are also taken symmetric
about each center Tine of the structure. The pillow-shaped temperature

distribution is defined by

T(x,y) = & sin P—gisin le (1)

where P and Q are both equal to unity* and 6 1is the value of the

temperature at the center of the plate. The discontinuous temperature

*By superimposing terms of this type, with P and Q having different
combinations of odd values and the 8 din each term being a function of

P and Q, one can approximate any symmetric temperature distribution.

The stresses due to such a temperature distribution can then be obtained by
superimposing the stresses due to the individual terms. It is for this
reason that the subsequent analysis is carried through with P and Q

left as symbols rather than being replaced by their numerical value of
prime interest, unity.



distribution is defined by T =0 along the stiffeners and T = 6 = constant
over the plate. In both cases the temperature T(x,y) is measured with
respect to some datum temperature distribution for which the structure is
assumed to be stress free in the absense of external loads.

The external edge loadings are also taken to be symmetric about
each center line of the plate. For the case of perfectly flexible
stiffeners these Toadings are assumed to be nonuniform as shown in
Figure 1. N;(y) denotes the force per unit length (positive for tension)
acting on the stiffeners at x =0 and x = a, N3(x) the force per
unit Tength on the other pair of stiffeners.

For the case of flexurally rigid stiffeners it is, of course,
immaterial, as far as the plate stresses and flutter behavior are concerned,
what the actual distribution of the external loading is like. It is only
the resultant force on each edge that is significant in influencing the
plate behavior. In the present paper these resultant forces are denoted
by T; (positive for tension) for the stiffeners at x =0 and x = a,
and by T3 for the stiffeners at y =0 and y = b, and they are
assumed to act at the center of each stiffener as shown in Figure 2.

The air is assumed to be flowing over one surface of the plate in
the x-direction (see Fig. 1) at a supersonic Mach number of M. When
the plate is perfectly flat the air stream produces no lateral force upon
it. When the plate deflects, however, the air stream exerts lateral
pressures which are assumed to be given by the linearized, static, two
dimensional supersonic aerodynamic theory or Ackeret theory. According
to this theory, which is said to be accurate for Mach number greater than
1.3 (ref. 4), the aerodynamic tension "2" on the plate surface due to

an air stream flowing in the positive x-direction is given by



M2-1 9oX
where
V = velocity of air stream
p = mass density of air
w(x,y,t) = Tlateral plate deflection
t = time

and the air is flowing over that surface of the plate which is on the
positive w side. The minus sign in the formula indicates that for
these conditions a positive slope will produce a local pressure (i.e.,
negative aerodynamic tension).

The partial differential equation governing the motion of the plate
for small Tateral deflections, and which will form the basis of the

subsequent flutter analysis is

DV4w - Ny Woyy = 2ny w,xy - Ny Wayy + uh Waps [ (2)
where
u = plate density (mass per unit volume)
D = En’ = plate flexural stiff
2052 p a ness

and commas indicate partial differentiation with respect to the
subscripted co-ordinates.

This plate partial differential equation is equation (217) of
reference 5 with the Tateral loading term q 1in that equation expressed

in terms of the aerodynamic tension ¢ and the inertia loading due to



plate motion. It must be solved subject to the following boundary conditions

of simple support:

w(o,y,t) =w(a,y,t) = w(x,0,t) = w(x,b,t) =0

(3)
w’XX(O"y’t) = W,xx(a’y,t) = w:yy(xsovt) = w:yy(xsbst) =0



EVALUATION OF PLATE STRESSES

This section will describe the evaluation of the inplane plate
stress resultants required as prerequisites for the determination of the
flutter behavior. These stresses are shown schematically in Figure 3;
they are denoted by Nx and Ny for the normal stress resultants and
by ny for the shear stress resultant and have the dimensions of force
per unit length. Figure 3 also shows the notation for the internal
stiffener cross-sectional tensions, namely P;(y) for the x =0 and a

stiffeners, P3(x) for the y = 0 and b stiffeners. P,(y) and P3(x)

have the dimensions of force.

Case 1: Pillow-Shaped Temperature Distribution, Perfectly Flexible

Stiffeners.

For the case of perfectly flexible stiffeners, reference 2 treats
a greatly generalized version of the stress problem considered here. In
reference 2 the plate may be orthotropic or isotropic, the structure,
loading, and temperature distribution are not necessarily symmetric, and
the external loading may include stiffener end tensions and shear flows
acting along the outer periphery of the stiffeners.

Therefore the plate stresses required for the present investigation
can be obtained from the equations of reference 2 by specializing those
equations in accordance with the more restricted nature of the present
configuration, that is by omitting the external shear flows and stiffener
end tensions, incorporating the symmetry of the structure, loading and
temperature distribution, and expressing the orthotropic elastic constants

in terms of the isotropic ones, E and wv.



The derivations in reference 2 are based upon the plate compatibility
equation, the stiffener axial equilibrium equations, the condition of
compatibility of strain between each stiffener and the plate edge to which
it is attached, the boundary conditions of prescribed lToading, and the
expansion of all known and unknown quantities in terms of Fourier series.
It is left to the interested reader to see reference 2 for these derivations.
Here only the specialized results of reference 2 needed for the present
purpose will be given.- The results for the stiffener stresses, although
not needed for the flutter analysis of the plate, will be given as ad-
ditional information of interest.

In order to use the results of reference 2 we require, not the
temperature distribution itself, but the thermal strains that it would
produce if every infinitesimal element of the structure were free to
undergo its thermal expansion unrestrained. These thermal strains are
shown schematically in Figure 4. For the nlate they will be denoted by
ex(x,y) and ey(x,y) in the x and y directions respectively. For
the stiffeners at x = 0 and a they will be denoted by e;(y), and
for the stiffeners at y =0 and b by es(x). Under the present
assumptions of isotropy and uniformity of material properties and a

pillow-shaped temperature distribution, these strains are

(4)

e; =e3 =0

Reference 2 further requires that certain functions of these thermal

strains be expressed in the form of Fourier series as follows:



ZTHI sinn%-y— for 0 <y<b
n odd

e;(y) - ey(o,y)

1 oan MAX
ZTm sin == for 0 < x < a (5)
m odd

es(x) - e, (x,0)

L>-]

a%e Bzex i . mmX nmy
_-zlax + Tl Z Top Sin — sin =g for 0 <x<a
d 0<y<b

m,n od

In the present case, with e , e ey, e3 as given by equation (4),

X y’
the above Fourier coefficients are readily seen to be

1= L T
Tn = Tm 0

2 2
- afw? (27+87) for m=P and n = Q (6)

mn
0 otherwise

Similarly, reference 2 requires that the external edge loadings be

known in the form of Fourier series as follows:

N; (y) Z B, sin -n—gl for 0<y<b
n odd
(7)

(o]

Z Bm"'sinm——gl(- for 0<x<a
m odd

N3 (x)
For the case of uniform edge loading (Ny(y) = constant = N;, N3(x) =
constant = N3) the Fourier coefficients in these series would be given by

B,' = 4Ni/(nm) and B ''' = 4Ng/(mr).
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With the apove Fourier coefficients known, reference 2 then Yyields
the following series for computing the plate stress resu]tants and stiffener
tensions in the case where structure, loading, and temperature distribution

are symmetric about each center line of -the plate:

M
Ne= > )

m,n odd 0<xc<a
for
M N
. 0<y<b
= i MIX
Ny—ZZcmnsm 3 sm—B-Y-
m,n odd
M N 0<xzxa
ny=-z Z jmn coswcosn—gl for
m,n odd 0<y=<b
M
Nx) = z 9, s1nm—’a'—x for 0 <x«<a (8)
y=0orb m odd
N
Ny) =Z cn'S'inH%-Z for O0<y<b
x=0o0r a n odd
N
Pi{y) = Z n'sin—gl for Q0<y<b
n odd
M
Py(x) = z sm"‘ sinm-—?- for O <x<a
m odd

(In reference 2, which considered the possibility of stiffener end tensions

as part of the external loading, the above series for P,(y) and P3(x)
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were not valid at the end points, y=0,b and x = 0, a respectively,
because they yield identically zero values there. Conseguently the regions
of validity for these series are indicated above as open regions. In the
present case, however, since stiffener end loads are absent the values of
P,(y) and P3(x) are actually zero at the end points; and the above
series for P;(y) and P3{(x) din the present case are therefore also
valid in the closed regions 0 <y <b and 0 < x < a, respectively.)

The Fourier coefficients appearing in the above series can be
evaluated in terms of the known Fourier coefficients Tn'(=0), Tm"'(=0),

T B ', Bm"'. The procedure is as follows:

mn® “n
First the gm' and cn' are determined by solving the following
system of simultaneous equations (specialized form of eqs. (B61'') and

(B63'') of ref. 2):

M 2 2 M g
= 4 mry2 19 _p o .4 %’
n [ALE + a jg: (_EQ Ean =R - b (_EJ jg: e
m odd m odd
n=1,3,..., N
(9)
N 2 2 N ¢
. 4 2 g e 4 Cn’
G E D (R e Ry -2 )
n odd n odd
m=1,3,..., M
where
cl
PR L0
' TEn b
(9a)
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= nm /v
R = ME T (5B, +T ') - E Kon
m odd (9a)

N
I e mmw (v 1
lel _AsE_a_(Eﬁ_Bml |+Tm|ll)_ Z lﬂ-,m
n odd

= T B W A Y
N ab mn b ‘a Eh Eh
The symbols M and N which appear as upper summation Timits in equations (8)
and which also determine the number of simultaneous equations in equation (9),
are positive odd integers whose values should be taken as large as possible
for the sake of accuracy (up to the point whose round off errors may begin
to offset accuracy).

With the cn: and gm' computed through equations (9), the
remaining Fourier coefficients in the series (8) can be readily obtained

from the following formulas:

= a e nm
g - - R e @
_ 4 mmy by2 o, mr 2
Cnn = 5—(—50 (nn) By ¥ ( ) Amn
. o2h i ayp i 4 byp
T YRR WAL LS (10)
] Al ] 1 ]
Sn =T(—Tn Eh +cn -an)
l||..A3 11 1 re1
Sm —-h—(- Tm Eh+gm - '\)Bm )

vhere

™ 4 my . 4 nw .
p = 21"+ (BEY°T {Tmnah+s";-cn+s<"—b>gm

UL (D)2 Py (OnyRgg e R0E C2)° [(OE z(‘“—gflsm'-'}
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The simultaneous equations (9) can be considerably simplified if
one deals with the special case of a square plate (a=b) with structure,
loading and temperature symmetrical not only about the center 1ines but
also about the diagonals, i.e., A; = A3, Bf' = Billl’ Til = Ti""

T.. =

i3 Tji' The corresponding symmetry that should result in the plate and

stiffener stresses is described by the following equations:

Ne(gan) = N (n,E)
ny(a,n) = ny(n,s)
Pi(n) = P3(n)

In order for this symmetry to be refiected in the results of the numerical

calculations one chooses M and N equal. Then equations (9) reduce to

a}' = E}' (i=1,3,..,M (11)
M Mooz
AN Y B TG B s ELEE YO RN
m odd m odd
(n=1,3,..., M (12)

Thus for this highly symmetric case it is necessary to solve only equations
(12) for the Eh'. Then equations (11) immediately give the 56'.

In order to provide stresses for use in connection with the sub-
sequent numerical flutter calculations equations (12) were further
specialized to the case of no external loads (Bi‘ = Bi"‘ = 0), Using

equations (6) for the T ' T.''hoand T and substituting (9a) for

n? mn?

the Rn‘, equations (12) can then be put into the following form most

suitable for calculations:
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M , M c
1 m 2 m - T P
SIS E —_— T % —_ = —
BT " oqq (MHn2)2 T z (m2+n?)?  NQ 4(p2+2)

m odd
(13)
n=1,3. .., M
where
cn'
Cn Y (14)
_ 4ah
Ay = ;zx;

and an is Kronecker’s delta. The dimensionless parameter X, 1is seen
to be a measure of the ratio of plate cross-sectional area to stiffener
cross-sectional area. It is of interest to note that for At 0, this

system of equations reduces to the especially simply form:
Cp = Snq M1mP/L4(P24Q2)]

With the Cn known, equation (10) then gives the following Fourier series

coefficients for this case:

%mn = abEh { 7 (m2+nZ)2 Lm cn *n Cm] - P2+Q2) Smp an }
6 = abfh { =22 InC +nC] - rehe 6o 6.}
mn ~ ® T (M2+n2)2 n m PZ+0Z) °mP °nQ
(15)
- 4mn p
dpn = o9Eh € - sraBieryr [n €, + 1 G+ Tpzuzy Sap Sng?
Sn' = AlEdecn

Equations (13) were solved simultaneously for the case of A, =1,
using M =59 and P =Q =1. The solution was by means of the Gauss-

Seidel iterative procedure. The resulting values of Cn ‘are given in

15




column (a) of Table 1. The corresponding stresses, as given by equations (8)
in conjunction with equations (15), are plotted in Figure 6 in dimensionless
form. Because of the symmetry, it suffices to show results for only one

quadrant of the structure.

Case 2: Pillow-Shaped Temperature Distributjon, Flexurally Rigid Stiffeners

The stress ana]ysis problem considered here is a special case of
the problem treated in Appendix E of reference 3, which deals with an
edge-stiffened rectangular plate with each stiffener bent and held into
a prescribed shape. In the present case the prescribed shape is one of
zero curvature. Reference 3 furthermore permits the plate to be orthotropic
or isotropic and does not require the structure, loading and temperature
distribution to possess symmetry. In addition the external Tloading of
reference 3 includes not only the resultant tensions T; and T; con-
sidered here (see Fig. 2), but also includes resultant external moments
in the plane of the plate, stiffener end tensions, and shear flows acting
along the outer periphery of the stiffeners. Therefore the stress analysis
needed for the present purpose can be obtained by adapting the analysis
of reference 3 to the more specialized characteristics of the present
configuration.

In the previous case (perfectly flexible stiffeners) any external
normal loading N;(y) and Ns3(x) was transmitted to the plate edges
through the stiffeners without any change. Thus the coefficients Bn'
and Bm"', which defined this external loading through equations (7),
also defined the normal stress resultants acting along the plate edge.

In the present case (stiffeners rigidly held to a prescribed shape) the
distributions of normal stress along the plate edges are unknown. If

N;(y) and N3(x) (eq. 7) now denote not the external loading but
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these distributions of normal stress resultant along the plate edges
then the Bn' and Bm"' represent two systems of unknowns for the present
problem. Additional unknowns in the present problem are the mutual forces
which the stiffeners exert upon each other at their junctions. Despite
the larger number of unknowns.in the present problem as compared with that
of Case 1, the problem is solvable by virtue of additional imposed con-
ditions on the present one, namely the requirements-that a) the curvature
of a plate edge be compatible at every point with the prescribed curvature
of the attached stiffener, and b) that each stiffener be in equilibrium
under the action of the external loading, the normal stress exerted on it
by the plate, and the end reactions upon it exerted by the adjacent
stiffeners. The detailed derivation of the stress analysis for this case
will not be given here. The interested reader is referred to reference 3
for this derivation. Here only those results of reference 3 pertinent
tu the present flutter problem will be given. The results for the stiffener
tensions will again be given as additional information of interest.
Reference 3 requires the same given basic information on thermal
strains as in Case 1, namely equations (4), (5), and (6). 1In addition
it requires that two additional thermal-strain quantities be known in the

form of Fourier series, to wit:

N
se.
) = zv'sin“—“l (0 <y <b)
X x =0 n b
n odd (16)
16
M
Je
X _ 1 esp MAX
5;—~) i 0— :g: Vm sin = (0 < x < a)
y m odd

and it requires that the prescribed curvatures of the edge stiffeners be

known in the form of the following series:
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2
E_U) -
W2 )y =0
2
v i
X2 ) _ ¢
where u(x,y) and v(x,y)
displacement.

the Fourier ceefficients Kn'
therefore not appear in the subséquent equations.

for the pillow-shaped temperature distributions,

The results

N
' oeipn MY
:gj Kn sin b

n odd

M
vr gan MTX
:g: ﬁn sin 2

m odd

(0 <y <b)

(17)

(0 < x < a)

are the x-wise and y-wise components of

[ PTT

Vn = af Y énQ
T - Qn

Vm = a6 “5 GnP

In the present case, since the stiffeners are held straight

and Km"' will be zero, and they will

In view of equation (4)

1 11
Vn and Vm become

(18)

for the plate stress resultants and stiffener tensions

can again be given in the form of equations (8) augmented by the following

equations:
N (0.y) = N (a.y)
Ny(x,o) = Ny(x,b)
P1(0+) = Py(b-) =
P3(0+) = P3(a-) =

N
= Zgj B,' sin L

n odd
M
_ . mrX
= Zg: Bm sin
m odd
T3 M
- . _a P
2 :g: mmw Bm
m odd
T N
1 b .
—z'ZmBn
n odd
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The Fourier coefficients appearing in the above and in equations (8) are
determined by first solving the following system of simultaneous equations
for the Bn', Bm"', T ' and Eh‘ (adapted from eqs. (E23) to (E30)

of ref. 3)!

M M
! 1 - 2 = v 1 [l |
By [Yn() Yn( 1 Sp z 2 Mo Byt z 2 vin' Im
m odd m odd
M
+ 2 \)mn' Cn'
m odd (n=1,3,...N)
N N
(N 1 - 2 = e | 1 [ = |
B [Fm() 1ﬂm( )] Sm Z 2Amn' By ¥ Z 2 v Cn
n odd n odd
N
* 2 von' " 9
n odd (m=1,3,...M)
(20)
M
cp' [oa(n) -e1(n)1 = s ' + Z 2w B 4B (y ' - y")
m odd
M o}
_ 4 (2 Z Im_
b b E
modd ™ - {n=1,3,...N)
N
9" Loa(m) - B2(m)] = 5 t"" + Z 2 Hog By + Bt (g -t
n odd
N ot
_ 4 (mmy? z on_
a a Emn
n odd (m=1,3,...M)
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where

R B DY A SCRRVTLIL NI

2

n odd

M
.
=Kyt - V- :Ej Eﬁn {ign' %9 [(2+ V)(ng * 202 ] }

- T
6ml|| =°|ﬂ"|” _vm||| _ Z ‘E—‘mn {_g (g) [(2+\))(g)2 + (E)Z ]}
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M
[aa(m) ~ y(mI = ME+E > () /Ey

m odd
N
2
[aalm) - go(m)] = AE+ & > (CD7E
n odd
M
2T
. nw 1  mnn2 3
Sn —A]_E (T) Tn| - Z ‘E‘m—n ~abh Tmn"'—b—.
m odd
X (21)
2T
- mmy 1 ] mn'ﬂ'z ____1_
Sp' 't = AE () T -Z E~ ab Tmn+'a
n odd
M
' Yo o nmy v 4 ﬂs'l =
' - vy 1=MED 2+2 @' L > E,
m odd
N
' ] - mry v, 4 my3 1 E
[ry' - T 1= AsE (~E) th b (a T :E: mn
n odd
_~2 mn 1 mry2 1 ay 2
b e R w - )

mn

Emn

(M + @77

(As in the previous case, M and N are selected odd integers; by

increasing M and N 1increasing accuracy is obtained, subject to the
limitations due to round-off errors.) With the Bn‘, Bm"', cn'
(= Eh' Ehb/(nm)), gm' (= 56' Eha/(mn)) computed through equations (20),
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we have thus evaluated the Fourier coefficients needed in equation (19).
To obtain the remaining required Fourier coefficients, namely those in
equations (8), equations (10) of the previous case are used.

The simultaneous equations (20) can be considerably simplified if
one deals with the special case of a square structure (a=b) with
symmetry not only about the center lines but also about the diagonals
(T, = T3, A; = Az, Tt =T Ty = Tji)° In order for this physical
symmetry to be reflected in the mathematical solution, it is necessary

to pick M and N equal. Then equations (20) reduces to

g I =CI
! ! (i = 1,3,...,M) (22)
B_i'll _B_il
M M
[} (1)_ (2) = r z [} ] Z [
B[ Y2l =8y 2 0oy Byt 2 van' Sm
m odd m odd
M
+ Z 2 \)mn Cn (n = ];33 sM)
m odd
(23)
M
c,'lea(n) - 81(n)] =5 "+ :g: 2n BBy, - ')
m odd
2 Moz
- £ - (n = 1,3,....M)
m odd ™
Thus for this highly symmetric case it is necessary to solve only
system (23) for the Eh' and B_'. Then equations (22) gives §h' and B '''.
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For the Tater numerical flutter calculation , equations (23) were
further specialized to the case of no external Toad (T; = T3 = 0) and
temperature distributions as described by equations (1), (4) and (6). The

resulting form of equations (23), taking into account equations (21), is

M
- 2 4+ (2+v)n2 [P2 + (2+v %2
{(12\)) - 2n2 [p [;2(++n232] B, = GnQ P; { P ;2(++Qg ] 1

p odd
p[p2 + (2+v)n?] [n2 - v
- 2n Z [p2 + n2]2 C +2n2C |p2+n2|2
p odd p odd
nZ - yp2
p odd

(n =1,3,...,M)

A _ Ay p
[l + Ay Z p2+n22] Tn ( Cn = %0 7 P27+ Q

p odd
M
3 1
+ [on + ynd Z p2+n22]Bn+ Al Z L pZ ¥ n2]2 ‘EJBp
p odd p odd
M b
2
- Mn Z [p2+n2]2 p

p odd
(n =1,3,...,M)
(24)
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where

B ]
_ n
B, = 36ER
C 1
_ n

Ch = 5oEh (25)
_ 4 ah
A= T2A

The reduced form of equations (10) corresponding to thié specialization is:

4m [m2 + 2n2]

_ 4n2
9yn = oOEh 7Im2 + n2]2 [an * nCm] o I ¥ n2]2 By

4n n2(n? + 2m?) 2
tom L [m2 + nZ]2 "~ 118, - [579?—G7]' $mp ®nq

- 4m? 4n [n2 + 2m?]
Con = OEh YT eI [mCy, + G + = v nzTe By

dm  m2(m? + 2n?) p2
tonz L [m2 + n2]2 ~ 118, - Pz v Q2] °mp °nQ

4mn2

A P 4m?n _
Jmn = a6Eh rPZ—%W] (Smp GnQ - WZ Cn.. nlm2 + n2j2 Cm

4m3 4n3 \

+ +
TImZ #1212 B ¥ Az + T an

s,' = AiEas [C - vB,] (26)

where the Bn and Cn are computed from equations(24).
Equations (24) were solved simultaneously for the case x»; =1,

using M =59* and P =Q = 1. The Gauss-Seidel iterative procedure was

*
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employed. The resulting values of Cn and Bn are given in columns (b)
and (c) of Table 1. The corresponding stresses, as given by equations (8)
and (19) in conjunction with equations (26), are plotted in Figure 7 in
dimensionless form. Because of the symmetry the stresses are given for

only one guadrant of the structure.

Case 3: Discontinuous Temperature Distribution, Flexurally Rigid Stiffeners.

Here we consider the case of perfectly rigid stiffeners with
stiffener temperatures constant at the value zero, plate temperature
constant at the value e, and the structure and loading symmetrical
about each center line (Fig. 2).

To determine the stress resultants, we start by assuming that a
state of homogeneous biaxial normal stress exists in the plate, and then
show that this assumption leads to a solution which satisfies all the
requirements of equilibrium and compatible deformations for the elements
of the structure.

Figure 5 shows the free-body diagrams of the stiffeners and plate

on the assumption that the plate stress resultants are

NX (x,y) = constant = N,

N, (X,y) = constant = N 27
y(y) cons y (27)
Ny (5y) =0

The plate and each element of it is obviously in equilibrium under this
stress field. The unknown stress resultants Nx and Ny also act on
the stiffener by virtue of Newton's third law. Since the stiffeners are
flexurally rigid, mutual internal reactions are to be expected at the

stiffener junctions. These reactions act as pairs of equal and opposite
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forces, one appearing as a shear force at the end of a stiffener and the

other an equal tension force at the end of the adjacent stiffener. The

forces labeled 1/2 (T; - Nx b) at the point (a,b) in Figure 5 are a

typical pair of such mutual internal reactions. The magnitude 1/2 (T; - NX b)
was arrived at by considering the equilibrium of the stiffener at x =a.

With the end reactions so obtained, equilibrium is completely

satisfied for all elements of Figure 5. It remains to determine the two
unknowns NX and Ny. These will be determined from the condition that

the (uniform) elongation of any stiffener and the (uniform) elongation

of the plate edge to which it is attached must be equal. MWriting this

condition for the edge x = 0 or a, one obtains

1/2(T5 - N, a)b N = oN
Y = Y X
A E C Eh *a6lb (28)

Similarly for the edge y = o0 or b,

172(T, - N, b)a N, - Wl
X X y
AT L 8 + abla (29)

Solving simultaneously for Nx and Ny yields

s Tah Tsh
1+ EK;J [EI;'- aeEh] + V(EK; - adEh)

X D+ 50+ 500 - w2

(30)

01+ 83 03 o] + vl - aoh)
zx; EIT.- ab v EK;-QB

Y D+ 30+ 3 - 2
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These values of Nx and Ny insure overall compatibility of elongation
for a stiffener and the plate edge to which it is attached. Since the
stiffener and plate strains are uniform, point-wise compatibility is also
insured. Finally, the edges of the plate obviously remain straight under
the stress distribution €7) i.e., compatible with the flexural rigidity
of the stiffeners. We have thus arrived at a stress distribution for the
structure that satisfies all the requirements of equilibrium and compatitbility
and which therefore must be the correct one.

In the subsequent flutter analysis the special case of a square
structure (a=b), with symmetry about the diagonals as well as the center
1ines (A; = A3), and with no external load (T, = T3 = 0) will be

considered. For this case, equations (30) become

N =N = - a8Eh
Y- + 3

(31)
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FLUTTER ANALYSIS

Having evaluated the mid-plane stresses, we can now turn to the
problem of studying the possible kinds of transverse motion of the plate
in the presence of these stresses and the airstream, and determining those
circumstances under which the motion can be characterized as flutter. The
analytical procedure to be employed is the same for cases 1 and 2 (pillow-
shaped temperature distribution with perfectly flexible or flexurally rigid
stiffeners), and therefore these two cases are discussed together in a
single section below. Case 3 (discontinuous temperature distribution

with flexurally rigid stiffeners) is discussed in a separate section.

Cases 1 and 2: Pillow-Shaped Temperature Distribution, Perfectly

Flexible or Flexurally Rigid Stiffeners.

The differential equation and boundary conditions have already
been presented in equations (2) and (3). Here we will seek solutions of

these equations in the form

where a q and w» are as yet undetermined constants and i = J-T.
Equation (32) obviously satisfies all the boundary conditions (eq. 3).
Since the differential equation (2) is 1inear any combination of solutions
of the above form will also be a solution.

The form of solution assumed in equation (32), namely the product
of a spatial function and eiwt, has been employed by Schaeffer and Heard
(ref. 1) as well as by others (ref. 5 and 6). In Appendix B we attempt

to show that there is no loss of generality in assuming solutions of the

above form.
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Substituting equation (32),along with expressions (eq. 8) for the
stress resultants, into equation (2), and for computational purposes
replacing the infinite upper summation 1imits of equation (32) by finite

values. R and S respectively, we obtain:

R S
_ 2 2.2
z Z 34 sin p;—x-sin 9%1[(-2-) + (%) ]

p='| g=1
M N R § , )
1 B q in WX o5 BIX (o MY (ooQm
* Buz Z Z zz L {(a) 9 * ) cmn} sin == sin 2= sin = s1n93-Z
m,n odd p=1 g=1

where

>
i

aerodynamic pressure parameter =

L
frequency parameter = %h—ﬂ-ﬂ— w?

K2

int

and the common factor e has been cancelled. The procedures for

determining the g__, ¢ and j which appear in the above equation
mn mn

mn’
have already been described in the previous section.

Equation (33) will now be solved for the apq's and o (or K2)
by Galerkins technique (ref. 7). To that end we write the following system

of equations:

ab
J J H(x,y) sin ﬁ;ﬁ sin S—gl dy dx = 0 (34)
00

r=1,2,...,R

s =1,2,...,S
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where H(x,y) stands for the entire left-hand side of equation (33).
Substituting for H(x,y) and carrying out the integrations indicated in

equation (34) one obtains the following system of equations for the a__'s

pq
, 2 s o M N R S
r S K 16
{[(g) + ()1 F}ars + Gub Z Z Z z pars  a .
m,n odd p=1 g=1
&8:2;} = even
aml®) g+ (D¢ T+ £ (k2 w2 p2)(s2- n2- @?)
a’ mn " '’ Spn- T 3h Jpn 17 M PUIAST- MR 67
[(m-p+r){m-p-r) (m¥p+r) (m+p-r) ][ (n-q+s)(n-g-s) (n+q+s) (n+q-s)j
2~ 1. ()P
+ EE?H'ZE: rp aps S =0 (35)
p=1
p#r
For r =1,2,...,R
S = 1,2,...,S

The above equation represents R times S Tlinear, homogeneous,
algebraic equations which the unknown amplitude coefficients 3.s and the
frequency parameter K2 must satisfy. The reader is reminded that the
influence of any applied loads and temperature distribution appears

implicitly in the coefficients Iyn® and jmn; and the influence

mn
of the airstream is in the aerodynamic pressure parameter A.

These equations always have the trivial solution A = 0 for all
combinations of r and s. This solution represents no motion whatsoever
of the plate (see eq. 32) and is therefore of no interest. Of interest
are solutions for the L and K2 such that some of the a, are not
zero. Such solutions can exist only for those values of K2 that make
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the determinant A of the coefficients of the a in equations (35)

rs
vanish. Thus one arrives at an eigenvalue problem. For any given airstream

'(x), Toads and temperature (i.e., known 9n® S one must solve

mn’® J.mn)’
for those values of K2 which satisfy the equation
A=0

Each such K2 1leads to two values of w, and each value of w leads to
a solution (motion) of the form of equation (32). The value of o itself
determines the temporal form of that solution; the spatial form of the
solution is determined by substituting the particular value of k2 into
equations (35) and using those equations to compute the relative magnitudes
of the LI The general motion of the plate is a superposition of the
component motions (each of the form of eq. 32) corresponding to all the
individual values of w satisfying the equation A = 0. The amount of
each component present in any particular motion of the plate depends, of-
course, on the initial conditions whereby the motion was started. 1In
this investigation we will not be concerned with any specific initial
conditions. Instead, imagining that all kinds of initial conditions are
conceivable, we will concern ourselves with the values of K2 (w) and
the temporal behavior of the component motions implied by these values.

Any particular value of K2 may be (a) real and negative,
(b) zero, (c) real and positive, or (d) complex. The corresponding values
of w and the implications regarding the temporal behavior of the component
motions of the plate are as follows: (a) a real and negative K2 gives
two purely imaginary values of w, one positive and one negative. It is
seen from equation (32) that the positive imaginary value of w leads to
a component motion that is of the non-oscillatory subsident types i.e.,

eimt becomes a negative exponential. On the other hand, the negative
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imaginary value of w 1leads to a positive exponential and hence represents
a non-oscillatory divergent component of motion. The case K2 real and
negative will therefore be characterized by its detrimental characteristic,
namely divergence.

(b) A zero value of K2 1leads to zero values of w, which eliminates
time from equation (32) and therefore represents static buckling.

(c) K2 real and positive leads to two real values of w , both of

which represent component motions of the form of simple harmonic motion,
i.e., ordinary vibration.

(d) K2 complex will lead to two complex values of w , one the negative
of the other. One of these values of « will have a positive imaginary
part, and the corresponding component of motion will therefore be an oscilla-
tory one with subsiding amplitude. However, the other value of «w will
have a negative imaginary part and will lead to an oscillatory motion with
ever-increasing amplitude. This type of motion is what we call flutter.
The case K2 complex will be characterized as flutter, since this is its
more detrimental consequence.

Since the equation A = 0 has more than one root (i.e., more than
one value of K2 satisfying it), several of the above types of component
motions can exist simultaneously. If any one of them i$ of the flutter
type (case d), the motion will be described as flutter. If none is of
flutter type, but one is of the divergence type (case a), the motion will
be characterized as divergence. If none is of the flutter or divergence
type, but one is of the static buckling type (case b), the behavior will
be described as statie buckling. Finally, if none of the component motions
js of the flutter, divergence or static buckling type (i.e., all of the

roots are real and positive as discussed in case c¢), then the motion is a
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a superposition of ordinary vibrations and it will be.described as ordinary
‘vibration.

If one is concerned only with determining the "flutter boundary",
i.e., those physical conditions which represent a transition from a non-
flutter behavior to a flutter behavior, it is evident from. the above that
this boundary is defined by any one of the K? values passing from real to
complex as the physical conditions change. The equation A = 0, with
A expanded as a polynomial in K2, has real coefficients; therefore
any complex roots for K2 come in complex conjugate pairs. Consequently,
assuming that the roots vary continuously with a continuous variation in
the physical conditions, one can determine the transition from non-flutter
to flutter behavior by seeking those physical conditions at which two
real values of K? become real and equal.

One final point is worth mentioning before we pass to a specific
case. By examining equations (35) it is evident that these equations can
be separated into two distinct groups: those equations corresponding to

s = 1,3,56. . . contain only those a, with second subscript odd; and

S

those equations resulting from s = 2,4,6,. . . contain only those g
with second subscript even. Consequently the equation a4 =0 can be

factored into two equations;

A' =0 AV =0

where A' 1is the determinant of the coefficients of the 2 with second
subscript odd, and A'' the determinant formed from the coefficients of
those 8pg with second subscript even. The matrices leading to A' and
A'' are each of smaller order than the matrix leading to A. The roots

of the equation A' = 0 will in general lead to motions which are symmetric
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about the center line of the plate parallel to the airstream; on the other

hand the equation A'' =0 1in general leads to motions which are anti-

symmetric about this center line and for which this center line forms a node.
Equations (35) apply to the general case of a pillow-shaped tempera-

ture distribution and a rectangular structure with symmetry of structure

and Toading about each center 1ine, and with perfectly flexible or flexurally

rigid stiffeners. Numerical results will be presented for the special

case considered earlier in connection with the stress analysis problem,

i.e., a square structure with no external load and symmetry about the

diagonals as well as the center lines. Equations (35) are specialized to

this case by setting a=b and by substituting for 9n°> Smn® jmn the

following expressions:

Yn = abkh Gmn
Con = a6Eh Cmn (36)
Jpn = a6Eh Jmn

where Gmn’ Cmn’ Jmn are defined, implicitly, by equations (15) for the
case of perfectly flexible stiffeners or by equations (26) for the case of
flexurally rigid stiffeners. With these substitutions made, and introducing

a thermal-load parameter v defined by

2 2 _—y?
p = 2EhA” @) lgi%ix_). , (37)

one obtains the following reduced form of equations (35):
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R S
16
[(r2 +52)2 - k2] a + "F%' :5: :E: 2hq POYS

p=1 g¢=1
ptr = even
G+s = even
M N 2 2 2_ 2. n2)(e2- n2- a2
4mn[p Gy * 0 Cmn] +24d., (r2- m2- p2)(s2- n2- g2)
Z = [ (m-p+r) (m-p-r) (mtp+r) (m+p-r) JL (n-g+s) (n-g-s) (n+g+s) (n+q-s)T
m,n o

R

2 1- (<)Y
N L (38)
p=1
p#r
for r=1,2,...,R
S = 1,2,...,S

For a square plate it seems plausible to assume that those spatial
modes which are symmetrical about the center 1ines parallel to the airstream
will govern; i.e., detrimental behavior (divergence, static buckling or
flutter) will occur at lower air speeds or lower temperature in these
modes than in the anti-symmetric modes.* Therefore only those eguations
of equation (38) corresponding to odd values of s will be used in
the computations. Taking six terms in the flow direction (r = 1,2,...6)
and three terms in the cross-flow direction (s = 1,3,5),
with M =N = 59, P=Q=1, and »; =1, one obtains the
eighteen simultaneous equations shown in Table 2 for the case of perfectly
flexibie stiffeners and in Table 3 for the case of flexurally rigid stiffeners.
(To obtain these equations it was first necessary to solve the stress
analysis problem by the procedure already described for cases 1 and 2 in

the previous section.)

*Results supporting this contention may be found in reference 1.
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The eigenvalues (K2) of these matrices were determined by
J. G. F. Francis' Unitary-Triangular or QR Transformation Method (ref.8)
for selected constant value of the thermal-load parameter ¢ and varying
values of the aerodynamic-pressure parameter A .

Figure 8 shows a typical set of results obtained by this method.
Plotted in Figure 8 are the real parts of the eigenvalues K2 versus
the aerodynamic pressure parameter A  for the case of perfectly flexible
stiffeners and ¢ = 12. It is seen that the plot is a series of loops,
the number depending on the values of R and S. In the case of R =6
and S = 5, there are nine Toops, corresponding to eighteen eigenvalues;
however, only three loops are shown for the sake of simplicity in Figure 8.
Each loop has a stem at the peak (e.g. point c') representing the value

of X =2 at which two real roots become equal and above which

critical
they become complex conjugates. Figure 8 shows all of the types of
values of K2 discussed earlier. The point labeled "a" and all such
points to the left of the A axis correspond to divergence (case a:
kK2 real and negative). The point labeled "b" corresponds to static
buckling (case b: K2 zero). A1l points labeled "c", i.e., all points
to the right of the A axis and below the peaks of respective loops,
correspond to ordinary vibration (case c: K2 real and positive). All
points, such as "d", which 1ie on the stems emanating from the peaks
correspond to flutter (case d: K2-complex). A peak point such as "c' "
represents the transition from a non flutter to a flutter character of
a pair of roots.

The first loop has the lowest peak and therefore determines the

lowest flutter speed. Being furthest to the left it also determines the

first occurrence of static buckling or divergence. Thus the first Toop
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alone is of practical significance for the purposes of this investigation,
and for this reason the upper portions of the other loops were not determined
precisely. Figure 9(a) shows how these first loops vary with y for the
case of perfectly flexible stiffeners, and Figure 10(a) does the same for
the case of flexurally rigid stiffeners. It is seen that for sufficiently
small ¢ there is no intersection with the A axis, i.e., neithef static
buckling nor divergence can occur. As ¢ 1increases the peak (flutter
speed) is lowered, and eventually the loop does intersect the A-axis,
implying that static buckling and divergence can occur.

Figures 9(b) and 10(b) summarize the important information
implied in Figures 9(a) and 10(a). The curve labeled » = Aep shows
how the ordinate X of the peak point c¢' of the first Toop varies with
¢ . This curve represents the boundary between those combinations of
A and y (above the curve) producing flutter and those combinations of
» and ¢ (below the curve) which do not produce flutter. The non-flutter
region (below the curve labeled A = Acr) is divided into sub-regions,
one representing those combinations of A and ¢ which are capable of
supporting only ordinary vibrations, and two others representing those
combinations of X and ¢ which are capable of supporting a divergent
type of behavior. The curve labeled "static buckling" is the locus in
the A -y plane of points such as "b" where the first loop intersects

the A axis; it constitutes a boundary between the sub-regions.
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Case 3: Discontinuous Temperature Distribution, Flexurally Rigid Stiffeners

The stress analysis for this case showed that the state of stress
in the plate was one of homogeneous biaxial normal stress (see eq. 30). The
flutter analysis for this situation was done in reference 1 (where it
corresponds to their case ¢ = 0), and therefore some numerical results
for this can be obtained from those of reference 1 by properly re-labeling
the parameters. Such numefica] results will be presented for the case
of a square plate (a=b) with four identical stiffeners and no external

load. For this case equation (31) gives:

N = N = _ OLeEh (39)

A (IEN I

The top curve of Figure 6 of reference 1 gives Acr for this case as a

function of the external load parameters Rx and Ry s Wwhich are

0 0
defined by
2
R o Nx a
XO 2D
(40)
N a2
Ryo T T ThaD

For N, and N_  as given by equation (31), R and R become
X y X, Yo

Eh a2
R, =k, = ol - S (41)
oo Yoo wL(-) +5RT [(-v) + S

where ¢ and X; are defined by equations (37) and (14) respectively.

Then the flutter boundary for this case can be plotted by using the top
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curves of Figure 6 of reference 1 and replacing the labels Rxo and R .

in accordance with the above equation. The result is shown in Figure 11(a).
The curve is terminated at point T, which corresponds to the point where
flutter and static buckling coalesce. Reference 1 did not give the static
buckling curve and so it is not given in Figure 11(a). However, the points
where the static buckling curve intersects the y-axis correspond to

static buckling under uniform biaxial compression in the absence of wind,
and therefore they were readily obtained from reference 9 and are shown in
Figure 11(a) as points P and Q. Figure 11(b) is a replot of Figure 11(a).

for the same values of A; and v that were used in presenting results

for cases 1 and 2, namely x; = 1.0 and v = 0.3.

Summary of Numerical Results

Figure 12 summarizes (in curves labeled 1, 2, and 3) the numerical
flutter results discussed above. Curves (1) and (2) are both for the case
of a sinusoidal pillow-shaped temperature distribution but with differing
edge-stiffener flexibility: curve (1) corresponds to the perfectly
flexible case and curve (2) to the flexurally rigid case. Curve (3) and
points P and Q are for the discontinuous temperature distribution with
flexurally rigid edge-stiffeners. (Curves (1), (2) and (3) correspond to
cases 1, 2, and 3 respectively.) For comparison, the results of Schaeffer
and Heard (ref. 1) for an unstiffened plate with a pillow-shaped (parabolic)

temperature distribution are presented as curve (0).

Discussion of Numerical Results

From the summary of numerical results (Fig. 12) or from the individual
results (Figs. 9, 10, 11 and Fig. 4 of Ref. 6), it is seen that the critical

value of A for flutter decreases as the temperature parameter ¢ increases.
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This is to be expected because of the compressive stresses induced in the
plate by the temperature distribution.

To see in detail the effects of different boundary conditions or
different temperature distributions, it is advantageous to study the curves
of Figure 12 in adjacent pairs.

First consider curves (0) and (1). These are both for the same
pillow-shaped temperature distribution (if we neglect the small difference
between the sinusoidal and the parabolic shapes), and differ only by
virtue of the fact that curve (0) is for completely unstiffened edges
while curve (1) is for edge stiffeners of zero flexural stiffness but of
finite axial stiffness. The marked Towering of curve (1) relative to
curve (0) is undoubtedly due to the higher compressive stresses arising
in the plate due to the additional restraint against thermal expansion
provided by the axial stiffness of the edge stiffeners.

Now consider curves (1) and (2). These are for the same pillow-
shaped temperature distribution and the same axjal stiffness of stiffeners,
and differ only in the flexural stiffness of the stiffeners, with curve (2)
corresponding to infinite flexural stiffness (stiffeners held straight)
and curve (1) corresponding to negligible flexural stiffness. Again, the
Towering of curve (2) relative to curve (1) can be ascribed to the higher
compressive stresses resulting from the higher constraint against thermal
expansion of the plate.

Finally, consider curves (2) and (3). These correspond to the same
edge-stiffener conditions (finite axial stiffness, infinite flexural
stiffness) and same stiffener temperature of zero, and differ only in
respect to the plate temperatures, with curve (2) corresponding to a

pillow-shaped temperature distribution of maximum value o , while
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curve (3) corresponds to a plate temperature distribution uniform at the
value 6. In the former case the cooler outer portions of the plate tend
to restrain partly the thermal expansion of the inner portion of the plate,
whereas in the latter case this restraint is absent. As a result the plate
as a whole tends to undergo more thermal expansion and hence develops
higher compressive stresses when this thermal expansion is restrained by
the stiffeners. Thus the Tlowering of curve (3) with respect to curve (2)
is to be expected.

For ¢y = 0 there are no thermal stresses in the plate regardless
of the presence or absence of edge-stiffeners. Consequently, all four

curves of Figure 12 emanate from the same point on the 2\ axis.
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CONCLUDING REMARKS

A theoretical analysis has been made of the supersonic flutter of
a rectangular plate with edge stiffeners under non-uniform temperature
distribution, producing midplane thermal stresses. Numerical results,
obtained for the case of a square plate, show that the presence of the
stiffeners has a marked effect on the midplane stresses and therefore
on the flutter speed. This effect was found to depend significantly
on the axial stiffness of the stiffeners, the flexural stiffness of the

stiffeners, and the kind of temperature distribution.
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APPENDIX A

LIST OF SYMBOLS

Remarks: i) The subscript 1 or 3 on a symbol for a stiffener-
related quantity identifies the stiffeper location as x=o,a or y=o,b
respectjvely. ii) The Fourier coefficients of known quantities (loads,
thermal strains), and combinations of such coefficients are generally
represented by capital letters, while the Fourier coefficients of initially
unknown quantities (internal stress,etc.) are denoted by small letters.
ii1) A parenthetical reference to an equation number in the 1ist below

will indicate the equation 1n which the symbol is first used.

a plate dimension (see Fig. 1)
a Fourier coefficients in series expansion for

lateral deflection w(x,y,t), (eq. 32).

apq(t) Fourier coefficient in series expansion for lateral
deflection w(x,y,t), (eq. B-1).
Ay, Ay Stiffener cross-sectional areas
Amn See equation (10)
b Plate dimension (see Fig. 1)
Bn' and Bm"' Fourier coefficients in series expansion for

N,(y) and N3(x) respectively, (eq. 7)

B Bn'/aeEh

c Fourier coefficients in series expansion for
N, (x.y),  (eq. 8)

c,' Fourier coefficient in series expansigns for
N (0.y), (eq. 8)

c c,,'/a6Eh
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ey (y) and e3(x)
e, (x,y) and e (x,)

EITII']

EI'l"lf'l

gmn

Hmn

mn

K2

Knn
Ko's Ky

4
MyN,P,q,r,s

M

M

' @) OF
See equation (36)
En3/[12(1-v2)]
Stiffener thermal strains
Plate thermal strains
See equation (21)
See equation (9a)
Fourier coefficients in series expansion for
N (x5y), (eq. 8)
Fourier coefficients in series expansion
for Nx(x,o). (eq. 8)
See equation (36)
Thickness of plate
See equation (21)
Fourier coefficients in series expansion for

N (x5y), (eq. 8)

Y
Frequency parameter, uha% w2/Dn"

See equation (9a)

Fourier coefficients in series expansion for
prescribed boundary curvatures, (eq. 17)
Aerodynamic forces, - [2q*AMZ=1J sw/3x
Summation indexes

Upper 1limit of Fourier series

Mach number

Summation index

Upper 1imit of Fourier series
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Ny (y), Na(x) External running tensions, force per unit length

N Ny, N Plate stress resultants, for per unit length

x? Xy
p Summation index
p1{y), ps(x) Stiffener cross-sectional tensions
P,Q Integers appearing in sinusoidal temperature
distribution, (eq. 1)
q* (1/2)pV2
q Summation index
r Summation index
R Upper 1imit of Fourier series
Rn' R, See equation (9a)
Rxo External load parameter (ref. 1).- N, a2/n2D
R‘y0 External load parameter (ref. 1), - Ny a2/n2D
s Summation index
S Upper 1imit of Fourier series
sn', sm"' Fourier coefficient in series expansion for the
stiffener cross-sectional tensions
Sn', Sm"' See equation (21)
T(x,y) Temperature distribution (eq. 1)
Ty, T3 External resultant loading
: Tmn Fourier coefficient see equation (5)
Tn', Tm"' Fourier coefficients in series expansion for thermal

strain discontinuities between stiffener and plate
edge, (eq. 5)

t Time
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[ai(n) - 81(n)]
Laz(m) ~ Bo(m)]

L' - vy'']
[Yn<1) - Yn(z)]
[le - rmll]
[Pm(l) - rm(2)]

83
anl’amlll

A

A'

All

9

A1

A

x and y components of displacements in plate
Velocity of air stream

Fourier coefficients in series expansion for
aey/ax etc. (eq. 16)

Lateral plate deflection

Cartesian co-ordinates

Coefficient of thermal expansion of plate and
stiffeners

See equation (21)

See equation (21)

See equation (21)

See equation (21)

See equation (21)

See equation (21)

Kroneckers delta

See equation (21)

Determinant of the coefficient of a

rs
Determinant of the coefficients of thase a.¢
with second subscript odd.

Determinant of the coefficients of those ¢
with second subscripts even

Temperature rise at the center of plate
Area-ratio parameter, 4ah/n2A; (eq. 14)
Aerodynamic pressure parameter,

2q* a3/D yM2-] (eq. 33)
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mn * “mn

Critical flutter speed
See equation (21)

Mass density of plate
See equation (21)
Poissons ratio

See equation (21)

See equation (21)

Mass density of air
o0Eh/Dn? , (eq. 37)

Circular frequency, radians per unit time
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APPENDIX B

The purpose of this appendix is to justify heuristically the
assumption made in the body of the paper to the effect that the aeneral
motion of the plate can be represented as 'a sum of terms, each of the type
shown on the right side of equation (32).

To that end we start by assuming a more general form for the

motion, namely

R S
w(x,y,t) = z Z qu(t) sin E%’i sin 9%1 (B-1)
p=1 g=

-t

in which the qu (in contrast to the a__'s of eq. 32) are undetermined

q
functions of time. From the theory of Fozrier series, it is known that
equation B-1 with sufficiently large R and S 1is capable of representing
the lateral motiaon of a simply supported rectangular plate to any desired
degree of accuracy.

Substituting equation B-1 into the basic differential equation (2)
o ny by their Fourier
series (eq. 10) and & by its exoression - 2q* (aw/ax)/M2-1 gives:

for the motion of the plate, replacing Nx’ N

—-— . m . m m 2 m 2.2
apq(t) sin Pa—xsm 9-51 [(Rg) + (95-) ]

Mm e

. X . w v 2 ¥ 2
(t) sin MX gip MY oip B™X g4y El_bl [(‘;L) 9 (g—-) Can

M
s
D

N=
NMe I T=

pq b a
m,n odd g=1
M N N
% z z Z _ef (t) cos Elfi cos 9—1 cos —— COS —lBR—) ) S ]
m,n odd p=1 g=1
R S
R S =
N Z Zqu(t) ——ﬂ— () sindg) cosp—— + % Z zapq t) sinP2Z sindpY = 0
p=1 g=1
p=1 g=1  (B-2)
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where a (t) stands for the second derivative of a (t) with respect to
time. Mu1t1p1y1ng this equation by sin (rqx)/a sin (smy)/b, where

r and s are any integers, and integrating over the whole region of the
plate, one obtains the following system of ordinary differential equations

for the functions qu(t):

M N R S
IO+ T+ 2 D> > D 6a (1) s
m,n odd p=1 g=1

ptr,_
qts }= even

4mn [(Engmn + (%chmn] + Eﬁ'jmn (r2- m2- p2)(s2- n2- q2)
[{m=-p+r) (m-p-r) (m+p+r) (m+p-r) J[ (n-q+s) (n-g-s ) (n+q+s) {n+q-s) ]

R
yh &, 22 1-(-1)P*" 7
* v aps(t) * aEgw 1”“ ps(8) Hirttergd - 0
g;r (B-3)
for r=1,2,...,R
s = 1,2,...,5

The above equations are linear and homogeneous differential equations
with constant coefficients. Such a system is known to have, in

general, a solution of the following form:

_ (m) _rwpt
apq(t) = Z g & (B-4)

m

where the w, are the roots of a characteristic equation obtained by
equating to zero the determinant of the coefficients of a certain system

of homogeneous algebraic equations. For any given value of m, the relative
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magnitudes of the apq(m) are determined by substituting the particular
value of O into this system of algebraic equations.
In view of equation B-4, the general motion, equation B-1, has the

form

R S '
- (m) cin PIX (oo gQmy it
w(x,y,t) = ZE: :g: ZE: 34 sin 5= sin <o e °m
m p=1 g=1
(B-5)
The right hand side of this equation is a sum of terms, each of the form

of the right hand side of equation (32).
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TABLE 1

Results of Solving Simultaneous Equations 13 and 24

for the Case M =59, a; =1, P=Q=1
(a) (b) (c)
Case 1 Case 2

n Cn Cn Bn

1 0.2014886 0.2604108 -0, 3068841

3 -0.005111925 0.09404856 0.0520033

5 -0.00130178 0.06144001 0.03772039

7 -0.000493739 0.04557436 0.03010360
9 -0.0002351824 0.03622673 0.02508517
11 -0.0001292827 0.03006727 0.02150895
13 -0.0000783595 0.02570173 0.01882797
15 ~-0.0000509683 0.02244517 0.01674201
17 -0.0000349673 0.01992211 0.01507195
19 -0.0000250098 0.01790943 0.01370412
21 -0.0000184955 0.01626622 0.01256302
23 -0.0000140577 0.01489917 0.01159634
25 -0.00001093168 0.01374395 0,01076678
27 -0.00000866683 0.01275479 0.01004704
29 -0.000006986196 0.01189826 0.009416610Q
31 -0.00000571312 0.01114930 0.008859836
33 -0.0000047312 0.01048888 0.008364495
35 -0.00000396182 0.009902135 0.007920992
37 ~-0.00000335048 0.009377394 0.007521577
39 -0.00000285864 0.008905318 0.007160012
41 -0.00000245848 0.008478362 0.006831195
43 -0.000002129615 0.008090362 0.006530862
45 -0.00000185685 0.007736210 0.006255489
47 -0.0000016287 0.00741674 0.006002109
49 -0.00000143647 0.007113181 0.005768187
51 -0.00000127331 0.006837726 0.005551599
53 -0.000001133943 0.006582752 0.00535050
55 -0.000001014188 0.006346043 0.005163275
57 -0.0000009107152 0.006125722 0.004988555
59 -0.0000008208478 0.005920138 0.004825130
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